
Using the Spry Framework

Trademarks

1 Step RoboPDF, ActiveEdit, ActiveTest, Authorware, Blue Sky Software, Blue Sky, Breeze, Breezo, Captivate, Central,
ColdFusion, Contribute, Database Explorer, Director, Dreamweaver, Fireworks, Flash, FlashCast, FlashHelp, Flash Lite,
FlashPaper, Flash Video Encoder, Flex, Flex Builder, Fontographer, FreeHand, Generator, HomeSite, JRun, MacRecorder,
Macromedia, MXML, RoboEngine, RoboHelp, RoboInfo, RoboPDF, Roundtrip, Roundtrip HTML, Shockwave, SoundEdit,
Studio MX, UltraDev, and WebHelp are either registered trademarks or trademarks of Adobe Systems Incorporated and may be
registered in the United States or in other jurisdictions including internationally. Other product names, logos, designs, titles,
words, or phrases mentioned within this publication may be trademarks, service marks, or trade names of Adobe Systems
Incorporated or other entities and may be registered in certain jurisdictions including internationally.

Third-Party Information

This guide contains links to third-party websites that are not under the control of Adobe Systems Incorporated, and Adobe
Systems Incorporated is not responsible for the content on any linked site. If you access a third-party website mentioned in this
guide, then you do so at your own risk. Adobe Systems Incorporated provides these links only as a convenience, and the inclusion
of the link does not imply that Adobe Systems Incorporated endorses or accepts any responsibility for the content on those third-
party sites.

© 2006 Adobe Systems Incorporated. All rights reserved. This manual may not be copied, photocopied, reproduced,
translated, or converted to any electronic or machine-readable form in whole or in part without written approval from
Adobe Systems Incorporated. Notwithstanding the foregoing, the owner or authorized user of a valid copy of the software
with which this manual was provided may print out one copy of this manual from an electronic version of this manual for
the sole purpose of such owner or authorized user learning to use such software, provided that no part of this manual may
be printed out, reproduced, distributed, resold, or transmitted for any other purposes, including, without limitation,
commercial purposes, such as selling copies of this documentation or providing paid-for support services.

Acknowledgments

Project Management: Charles Nadeau

Writing: Jon Michael Varese

Production Management: Adam Barnett

Media Design and Production: Adam Barnett, Masayo Noda

First Edition: January 2006

Adobe Systems Incorporated
601 Townsend St.
San Francisco, CA 94103

Contents
Using the Spry framework . 5

About AJAX and the Spry framework . 5
About AJAX . 5
About the Spry framework. 6

How Spry pages work . 6
Anatomy of the Spry data set . 6
Anatomy of the Spry dynamic region .9
Anatomy of the Spry basic master/detail dynamic region 11
Anatomy of master/detail dynamic regions that depend on

more than one data set. 13
Building Spry pages. 17

To prepare your files . 18
To create a Spry data set . 18
To display data from a Spry data set . 21
Sample code: Spry data set and dynamic region 23
To sort a Spry data set . 24

Numerical sorting . 25
To create basic master/detail dynamic regions. 25
To create master/detail dynamic regions that rely on

more than one data set. 28
3

4 Contents

Using the Spry framework
This help, which outlines how to use the Spry framework, contains the following topics:
About AJAX and the Spry framework . 5

How Spry pages work . 6

Building Spry pages. .17

About AJAX and the Spry framework
This section contains the following topics:

■ “About AJAX” on page 5
■ “About the Spry framework” on page 6

About AJAX
Asynchronous JavaScript and XML, or AJAX, is a concept for how Web developers can use
various techniques to update web pages without requiring visible refreshes and without the
need for browser add-on technologies like Flash, Java, or ActiveX. AJAX is not a product,
company, or trademark.

Implementing AJAX features often requires knowledge of JavaScript, XML, and the
Document Object Model (DOM). Spry provides a light-weight, HTML-centric framework
that makes the task simpler.

For more information about AJAX, see http://en.wikipedia.org/wiki/AJAX.
5

http://en.wikipedia.org/wiki/AJAX

About the Spry framework
The Spry framework is a JavaScript library that provides web designers with the ability to
build web pages that offer richer experiences to their users. It is a light-weight framework
designed to bring AJAX to the web-design community. The first release of the Spry
framework is a preview of the data capabilities that enable designers to incorporate XML data
into their HTML documents using HTML, CSS, and a minimal amount of JavaScript,
without the need for refreshing the entire page. The Spry framework is HTML-centric, and
easy to implement for users with basic knowledge of HTML, CSS and JavaScript. The
framework was designed such that the markup is simple and the JavaScript is minimal.

The Spry framework is meant primarily for users who are web design professionals or
advanced non-professional web designers. It is not meant to be a full web application
framework for enterprise-level web development (though it can be used in conjunction with
other enterprise-level pages).

How Spry pages work
This section contains the following topics:

■ “Anatomy of the Spry data set” on page 6
■ “Anatomy of the Spry dynamic region” on page 9
■ “Anatomy of the Spry basic master/detail dynamic region” on page 11
■ “Anatomy of master/detail dynamic regions that depend on more than one data set”

on page 13

Anatomy of the Spry data set
A Spry data set is a JavaScript object. With a few snippets of code in your web page, you can
create this object and load data from an XML source into it when the user opens the page in a
browser. The data set results in a flattened array of XML data that can be visualized as a
standard table containing rows and columns.

For example, suppose you have an XML source file, cafetownsend.xml, that contains the
following information:
<?xml version="1.0" encoding="UTF-8"?>
<specials>

<menu_item id="1">
<item>Summer Salad</item>
<description>organic butter lettuce with apples, blood oranges,

gorgonzola, and raspberry vinaigrette.</description>
<price>7</price>
6 Using the Spry framework

</menu_item>
<menu_item id="2">

<item>Thai Noodle Salad</item>
<description>lightly sauteed in sesame oil with baby bok choi,

portobello mushrooms, and scallions.</description>
<price>8</price>

</menu_item>
<menu_item id="3">

<item>Grilled Pacific Salmon</item>
<description>served with new potatoes, diced beets, Italian parlsey,

and lemon zest.</description>
<price>16</price>

</menu_item>
</specials>

The data set flattens the XML data into an array of objects (rows) and properties (columns)
that can be visualized as the following table:

The data set contains a row for each menu item and the following columns: @id, item,
description, and price. The columns represent the child nodes of the specials/menu_item
node in the XML, plus any attributes contained in the menu_item tag, or in any of the child
tags of the menu_item tag.

The data set also contains a built-in data reference called ds_RowID (not shown) that can be
useful later when you display your data.

You create a Spry data set object by using the Spry.Data.XMLDataSet constructor. The
default structure (or schema) of the data set is defined by the XML data source. For example,
if the data source is a repeating XML node that contains three child nodes, the data set will
have a row for each repeating node, and a column for each of the three child nodes. (If any of
the repeating nodes or child nodes contain attributes, the data set also creates a column for
each attribute.)

Once created, the data set object lets you easily display and manage the data. For example, you
can create a simple table that displays the XML data, and then use simple methods and
properties to reload data, sort and filter data, or page through data.

@id item description price

1 Summer salad organic butter lettuce with apples, blood
oranges, gorgonzola, and raspberry
vinaigrette.

7

2 Thai Noodle Salad lightly sauteed in sesame oil with baby bok
choi, portobello mushrooms, and scallions.

8

3 Grilled Pacific Salmon served with new potatoes, diced beets, Italian
parlsey, and lemon zest.

16
How Spry pages work 7

The following example illustrates how you would create a Spry data set called dsSpecials, and
load data from an XML file called cafetownsend.xml:
<head>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" /
>
<title>Spry Example</title>
<!--Link the Spry libraries-->
<script type="text/javascript" src="includes/xpath.js"></script>
<script type="text/javascript" src="includes/SpryData.js"></script>
<!--Create a data set object-->
<script type="text/javascript">

var dsSpecials = new Spry.Data.XMLDataSet("data/cafetownsend.xml",
"specials/menu_item");
</script>

</head>

<body>
</body>

In the example, the first <script> tag links an open-source XPath library to the page where
you’ll eventually display XML data. The XPath library allows for the specification of more
complex XPath when you create a data set:
<script type="text/javascript" src="includes/xpath.js"></script>

The second <script> block links the Spry data library, SpryData.js, which is stored in a
folder called includes on the server:
<script type="text/javascript" src="includes/SpryData.js"></script>

The Spry data library is dependent on the XPath library, so it’s important that you always link
the XPath library first.

The third <script> block contains the statement that creates the data set called dsSpecials.
The XML source file, cafetownsend.xml, is stored in a folder called data on the server:
var dsSpecials = new Spry.Data.XMLDataSet("data/cafetownsend.xml",

"specials/menu_item");

In JavaScript the operator new is used to create objects. The Spry.Data.XMLDataSet method
is a constructor in the Spry data library that creates new Spry data set objects. The constructor
takes two parameters: the source of the data ("data/cafetownsend.xml") and an XPath
expression that specifies the node or nodes in the XML to supply the data ("specials/
menu_item").

N
O

T
E

The examples in this document are for reading purposes only and not intended for
execution. For working samples, see the demos folder in the Spry_P1_1_06-08 folder.
For more information, see “To prepare your files” on page 18.
8 Using the Spry framework

You can also specify a URL as the source of the XML data, as follows:
var dsSpecials = new Spry.Data.XMLDataSet("http://www.somesite.com/

somefolder/cafetownsend.xml", "specials/menu_item");

In the example, the constructor creates a new Spry data set object called dsSpecials. The data
set obtains data from the specified specials/menu_item node in the XML file
cafetownsend.xml and converts the data to a flattened array of objects and properties, similar
to the rows and columns of a table. (See the beginning of this section for a visualization of the
table.)

Each data set maintains the notion of a "current row." By default, the current row is set to the
first row in the data set. Later, you can change the current row programatically by calling the
setCurrentRow() method on the data set object. For more information, see “Anatomy of the
Spry basic master/detail dynamic region” on page 11.

Anatomy of the Spry dynamic region
Once you’ve created a Spry data set, you can display the data in a Spry dynamic region. A Spry
dynamic region is an area on a web page that’s bound to a data set. The region displays the
XML data from the data set and automatically updates the data display whenever the data set
is modified. You declare a Spry dynamic region in a container tag using the spry:region
attribute. Most HTML elements can act as dynamic region containers, however, the following
tags cannot be used:

■ col

■ colgroup

■ frameset

■ html

■ iframe

■ style

■ table

■ tbody

■ tfoot

■ thead

N
O

T
E

The URL you decide to use (whether absolute or relative) is subject to the browser’s
security model, which means that you can only load data from an XML source that is on
the same server domain as the HTML page you’re linking from. You can get around this
limitation by providing a cross-domain service script. For more information, consult your
server administrator.
How Spry pages work 9

■ title

■ tr

While you cannot use any of the above HTML elements as Spry dynamic region containers,
you are allowed to use them inside Spry dynamic region containers.

In the following example, we’ve created a container for a dynamic region called Specials_DIV
using a div tag that includes a standard HTML table. Tables are typical HTML elements
used for dynamic regions because the first row of the table can contain headings, and the
second row can contain repeated XML data.
<!--Create the Spry dynamic region-->
<div id="Specials_DIV" spry:region="dsSpecials">

<!--Display the data in a table-->
<table id="Specials_Table">

<tr>
<th>Item</th>
<th>Description</th>
<th>Price</th>

</tr>
<tr spry:repeat="dsSpecials">

<td>{item}</td>
<td>{description}</td>
<td>{price}</td>

</tr>
</table>

</div>

In the example, the div tag that creates the container for the dynamic region needs only two
attributes: a spry:region attribute that declares the dynamic region and specifies the data set
to use in it, and an id attribute that names the region:
<div id="Specials_DIV" spry:region="dsSpecials">

The new region is an “observer” or “listener” of the dsSpecials data set. Any time the
dsSpecials data set changes, the new dynamic region regenerates itself with the updated data.

An HTML table displays the data:
<table id="Specials_Table">

<tr>
<th>Item</th>
<th>Description</th>
<th>Price</th>

</tr>
<tr spry:repeat="dsSpecials">

<td>{item}</td>

N
O

T
E

Dynamic regions are limited to regions within the body tag. You can't add the
spry:region attribute to any tag that is outside the body tag.
10 Using the Spry framework

<td>{description}</td>
<td>{price}</td>

</tr>
</table>

The values in curly braces in the second row of the table specify the columns in the data set.
The curly braces bind the table cells to the data in specific columns of the data set. Because
XML data often includes repeating nodes, the example also declares a spry:repeat attribute
in the second table row tag. This causes all of the rows in the data set to appear when the user
loads the page (instead of just the data set’s current row).

Anatomy of the Spry basic master/detail dynamic
region
When working with Spry data sets, you can create master/detail dynamic regions to display
more detail about your data. One region on the page (the master), drives the display of the
data in another region on the page (the detail). Typically, the master region displays an
abbreviated form of a set of records from the data set, and the detail region displays more
information about a selected record. Because the detail region is dependent on the master
region, any time the data in the master region changes, the data in the detail region changes as
well.

This section covers basic master/detail relationships where both regions are dependent on the
same data set. For information on master/detail regions that use more than one data set, see
“Anatomy of master/detail dynamic regions that depend on more than one data set”
on page 13.

In the following example, a master dynamic region displays data from the data set dsSpecials,
and a detail dynamic region displays more detail about the row of data that’s been selected in
the master region:
<head>
. . .
<script type="text/javascript" src="../includes/xpath.js"></script>
<script type="text/javascript" src="../includes/SpryData.js"></script>
<script type="text/javascript">

var dsSpecials = new Spry.Data.XMLDataSet("data/cafetownsend.xml",
"specials/menu_item");</script>

</head>
. . .
<body>

<!--Create a master dynamic region-->
<div id="Specials_DIV" spry:region="dsSpecials">

<table id="Specials_Table">
<tr>

<th>Item</th>
How Spry pages work 11

<th>Description</th>
<th>Price</th>

</tr>
<!--User clicks to reset the current row in the data set-->
<tr spry:repeat="dsSpecials"

onclick="dsSpecials.setCurrentRow('{ds_RowID}')">
<td>{item}</td>
<td>{description}</td>
<td>{price}</td>

</tr>
</table>

</div>
<!--Create the detail dynamic region-->
<div id="Specials_Detail_DIV" spry:detailregion="dsSpecials">

<table id="Specials_Detail_Table">
<tr>

<th>Ingredients</th>
<th>Calories</th>

</tr>
<tr>

<td>{ingredients}</td>
<td>{calories}</td>

</tr>
</table>

</div>
. . .
</body>

In the example, the first div tag contains the id and spry:region attributes that create a
container for the master dynamic region:
<div id="Specials_DIV" spry:region="dsSpecials">

The first table row tag of the master region contains an onclick event handler that resets the
value of the current row in the data set.
<tr spry:repeat="dsSpecials"

onclick="dsSpecials.setCurrentRow('{ds_RowID}')">

The second div tag contains the attributes that create a container for the detail dynamic
region:
<div id="Specials_Detail_DIV" spry:detailregion="dsSpecials">

Every Spry data set maintains the notion of a “current row.” By default, the current row is set
to the first row in the data set.

N
O

T
E

The example XML file in “Anatomy of the Spry data set” on page 6 does not contain
nodes for ingredients or calories. We’ve added these nodes to the data set for purposes
of this example.
12 Using the Spry framework

The binding expressions in the detail region ({ingredients} and {calories}) display data
from the data set’s current row when the page loads in a browser. When a user clicks a row in
the master region table, however, the onclick handler changes the current row in the data set
to the row the user selected.

The {ds_RowID} data reference is a built-in part of the Spry framework that points to an
automatically-generated unique ID for each row in the data set. (See “Anatomy of the Spry
data set” on page 6.) When the user selects a row in the master region table, the onclick event
handler supplies the unique ID to the setCurrentRow method, which causes the resetting of
the current row in the data set.

Whenever the data set is modified, all dynamic regions bound to that data set regenerate
themselves and display the updated data. Since the detail region, like the master region, is an
observer of the dsSpecials data set, it also changes as a result of the modification, and displays
data related to the row the user selected (the new current row).

The difference between a spry:region and a spry:detailregion is that the
spry:detailregion specifically listens for CurrentRowChange notifications (in addition to
DataChanged notifications) from the data set, and updates itself when it receives one. Normal
spry:regions, on the other hand, ignore the CurrentRowChange notification, and only
update when they receive a DataChanged notification from the data set.

Anatomy of master/detail dynamic regions that
depend on more than one data set
In some cases, you might want to create master/detail relationships that involve more than
one data set. For example, you might have a list of menu items that has a great deal of detail
information associated with it. (This section uses a list of ingredients to illustrate the point.)
Fetching all of the information associated with every menu item in a single query might be an
inefficient use of bandwidth not to mention unnecessary, given that many users might not
even be interested in the details of everything on the menu. Instead, it would be more efficient
to download only the detail data that the user is interested in when the user requests it, thus
improving performance and reducing bandwidth. Limiting the amount of data exchange in
this way is a common technique used to improve performance in AJAX applications.

Following is the XML source code for a sample file called cafetownsend.xml:
<?xml version="1.0" encoding="UTF-8"?>
<specials>

<menu_item id="1">
<item>Summer Salad</item>
<description>organic butter lettuce with apples, blood oranges,

gorgonzola, and raspberry vinaigrette.</description>
<price>7</price>
How Spry pages work 13

<url>summersalad.xml</url>
</menu_item>
<menu_item id="2">

<item>Thai Noodle Salad</item>
<description>lightly sauteed in sesame oil with baby bok choi,

portobello mushrooms, and scallions.</description>
<price>8</price>
<url>thainoodles.xml</url>

</menu_item>
<menu_item id="3">

<item>Grilled Pacific Salmon</item>
<description>served with new potatoes, diced beets, Italian parlsey,

and lemon zest.</description>
<price>16</price>
<url>salmon.xml</url>

</menu_item>
</specials>

The cafetownsend.xml file supplies the data for the master data set. The url node of the
cafetownsend.xml file points to a unique XML file (or URL) for each menu item. These
unique XML files contain a list of ingredients for the corresponding menu items. The
summersalad.xml file, for example, might look as follows:
<?xml version="1.0" encoding="iso-8859-1" ?>
<item>

<item_name>Summer salad</item_name>
<ingredients>

<ingredient>
<name>butter lettuce</name>

</ingredient>
<ingredient>

<name>Macintosh apples</name>
</ingredient>
<ingredient>

<name>Blood oranges</name>
</ingredient>
<ingredient>

<name>Gorgonzola cheese</name>
</ingredient>
<ingredient>

<name>raspberries</name>
</ingredient>
<ingredient>

<name>Extra virgin olive oil</name>
</ingredient>
<ingredient>

N
O

T
E

This XML sample code is different from the code used in “Anatomy of the Spry data set”
on page 6.
14 Using the Spry framework

<name>balsamic vinegar</name>
</ingredient>
<ingredient>

<name>sugar</name>
</ingredient>
<ingredient>

<name>salt</name>
</ingredient>
<ingredient>

<name>pepper</name>
</ingredient>
<ingredient>

<name>parsley</name>
</ingredient>
<ingredient>

<name>basil</name>
</ingredient>

</ingredients>
</item>

Once you are familiar with the structure of your XML, you can create two data sets that you’ll
use to display data in master/detail dynamic regions. In the following example, a master
dynamic region displays data from the data set dsSpecials, and a detail dynamic region
displays data from the data set dsIngredients:
<head>
. . .
<script type="text/javascript" src="../includes/xpath.js"></script>
<script type="text/javascript" src="../includes/SpryData.js"></script>
<script type="text/javascript">
<!--Create two separate data sets-->

var dsSpecials = new Spry.Data.XMLDataSet("data/cafetownsend.xml",
"specials/menu_item");

var dsIngredients = new Spry.Data.XMLDataSet("data/{dsSpecials::url}",
"item/ingredients/ingredient");

</script>
</head>
. . .
<body>

<!--Create a master dynamic region-->
<div id="Specials_DIV" spry:region="dsSpecials">

<table id="Specials_Table">
<tr>

<th>Item</th>
<th>Description</th>
<th>Price</th>

</tr>
<!--User clicks to reset the current row in the data set-->
<tr spry:repeat="dsSpecials"

onclick="dsSpecials.setCurrentRow('{ds_RowID}')">
How Spry pages work 15

<td>{item}</td>
<td>{description}</td>
<td>{price}</td>

</tr>
</table>

</div>
<!--Create the detail dynamic region-->
<div id="Specials_Detail_DIV" spry:region="dsIngredients">

<table id="Specials_Detail_Table">
<tr>

<th>Ingredients</th>
</tr>
<tr spry:repeat=”dsIngredients”>

<td>{name}</td>
</tr>

</table>
</div>
. . .
</body>

In the example, the third <script> block contains the statement that creates two data sets,
one called dsSpecials and one called dsIngredients:
var dsSpecials = new Spry.Data.XMLDataSet("data/cafetownsend.xml",

"specials/menu_item");
var dsIngredients = new Spry.Data.XMLDataSet("data/{dsSpecials::url}",

"item/ingredients/ingredient");

The url for the second data set, dsIngredients, contains a data reference
({dsSpecials::url}) to the first data set, dsSpecials. More specifically, it contains a data
reference to the url column in the dsSpecials data set. When the url or XPath argument in the
constructor that creates a data set contains a reference to another data set, that data set (the
data set being created) automatically becomes an observer of the data set it’s referencing. As
such, the new data set is dependent on the original data set, and reloads its data or reapplies its
XPath whenever the data or current row changes in the original data set.

In the example, the act of changing the current row in the dsSpecials data set sends a
notification to the dsIngredients data set that it also needs to change. Because each row of the
dsSpecials data set contains a distinct URL in the url column, the dsIngredients data set must
update to include the correct URL for the selected row.
16 Using the Spry framework

By default, the dsIngredients data set (whose data is displayed in the detail region) is created
using the data it obtains from the URL specified in the constructor—in this case a reference
to the data in the url column of the dsSpecials data set. The default current row in the
dsSpecials data set (the first row) contains a unique path to the summersalad.xml file, and
thus the detail region displays the information from that file when the page loads in a browser.
When the current row of the dsSpecials data set changes, however, the URL also changes—to
salmon.xml for example—and the dsIngredients data set (and by association, the detail
dynamic region) updates accordingly.

This process is functionally equivalent to the one illustrated in “Anatomy of the Spry basic
master/detail dynamic region” on page 11, the technical difference being that in this case the
second (or detail) data set is listening for data and row changes in the master data set, whereas
in the basic example, the detail region is listening for data and row changes in the master data
set.

It should also be noted that in the example code, spry:region is used for the detail region
instead of spry:detailregion. As outlined in the previous section, the difference between a
spry:region and a spry:detailregion is that the spry:detailregion specifically listens
for CurrentRowChange notifications (in addition to DataChanged notifications) from the
data set, and updates itself when it receives one. Because the current row of the dsIngredients
data set never changes (it’s the current row of the dsSpecials data set that changes), there is no
need to use a spry:detailregion attribute. In this case, the spry:region attribute, which
defines a region that only listens for DataChanged notifications, suffices.

Building Spry pages
This section contains the following topics:

■ “To prepare your files” on page 18
■ “To create a Spry data set” on page 19
■ “To display data from a Spry data set” on page 21
■ “Sample code: Spry data set and dynamic region” on page 23
■ “To sort a Spry data set” on page 24
■ “To create basic master/detail dynamic regions” on page 26
■ “To create master/detail dynamic regions that rely on more than one data set” on page 28
Building Spry pages 17

To prepare your files
Before you begin creating Spry data sets, you’ll need to obtain the necessary files (xpath.js and
SpryData.js). The xpath.js file allows you to specify complex XPath expressions when creating
your data set; the SpryData.js file contains the Spry data library.

You’ll also need to link both files to whatever HTML page you’re creating.

To obtain the necessary files

1. Locate the Spry_P1_1_06-08.zip file on the Labs website.

2. Download and unzip the Spry_P1_1_06-08.zip file to your hard drive.

3. Open the unzipped Spry_P1_1_06-08 folder and locate the includes folder. This folder
contains the xpath.js and SpryData.js files necessary for running the Spry framework.

4. Copy the includes folder and either paste or drag a copy of it to the root directory of your
web site.

5. In Code view (View > Code) link the Spry data library files to your web page by inserting
the following script tags within the page’s head tag:
<script type="text/javascript" src="includes/xpath.js"></script>
<script type="text/javascript" src="includes/SpryData.js"></script>

The SpryData.js file is dependent on the xpath.js file, so it’s important that the xpath.js
file come first in your code.
Once you’ve linked the Spry data library, you are ready to create a Spry data set. For
instructions, see “To create a Spry data set” on page 19.

6. Add the Spry name space declaration to the HTML tag so that the HTML tag looks as
follows:
<html xmlns="http://www.w3.org/1999/xhtml" xmlns:spry="http://

ns.adobe.com/spry/">

The Spry name space declaration is necessary if you want to validate your code.

Related Topics

“Anatomy of the Spry data set” on page 6

N
O

T
E

If you drag the original includes folder out of the unzipped Spry_P1_1_06-08 folder,
the demos in the Spry_P1_1_06-08 folder won’t work properly.

N
O

T
E

Spry features will work locally as long as the Spry data library files are linked to your
HTML page. When you want to publish the HTML page to a live server, however, you’ll
need to upload the xpath.js and SpryData.js files as dependent files.
18 Using the Spry framework

To create a Spry data set
1. Open a new or existing HTML page.

2. Make sure that you’ve linked the Spry data library files to the page. For more information,
see “To prepare your files” on page 18.

3. Locate the XML source for the data set.

For example, you might want to use an XML file called cafetownsend.xml located in a
folder called data in the site’s root folder:
data/cafetownsend.xml
You could also specify a URL to an XML file, as follows:
http://www.somesite.com/somefolder/cafetownsend.xml

4. Because you’ll need to specify the repeating XML node that supplies data to the data set,
make sure you understand the structure of the XML before you create the data set.

In the following example, the cafetownsend.xml file consists of a parent node called
specials that contains a repeating child node called menu_item.
<?xml version="1.0" encoding="UTF-8"?>
<specials>

<menu_item id="1">
<item>Summer Salad</item>
<description>organic butter lettuce with apples, blood oranges,

gorgonzola, and raspberry vinaigrette.</description>
<price>7</price>

</menu_item>
<menu_item id="2">

<item>Thai Noodle Salad</item>
<description>lightly sauteed in sesame oil with baby bok choi,

portobello mushrooms, and scallions.</description>
<price>8</price>

</menu_item>
<menu_item id="3">

<item>Grilled Pacific Salmon</item>
<description>served with new potatoes, diced beets, Italian parlsey,

and lemon zest.</description>
<price>16</price>

</menu_item>
</specials>

N
O

T
E

The URL you decide to use (whether absolute or relative) is subject to the browser’s
security model, which means that you can only load data from an XML source that is
on the same server domain as the HTML page you’re linking from. You can get
around this limitation by providing a cross-domain service script. For more
information, consult your server administrator.
Building Spry pages 19

5. Create the data set by inserting the following script block after the script tags importing
the library:
<script type="text/javascript">

var datasetName = new Spry.Data.XMLDataSet("XMLsource",
"XPathToRepeatingChildNode");

</script>

In the Cafe Townsend example, you would create a data set with the following statement:
var dsSpecials = new Spry.Data.XMLDataSet("data/cafetownsend.xml",

"specials/menu_item");

The statement creates a new data set called dsSpecials that retrieves data from the specials/
menu_item node in the specified XML file. The data set will have a row for each menu
item and the following columns: @id, item, description, and price. The table can be
visualized as follows:

You can also specify a URL as the source of the XML data, as follows:
var dsSpecials = new Spry.Data.XMLDataSet("http://www.somesite.com/

somefolder/cafetownsend.xml", "specials/menu_item");

The completed example code could look as follows:
<head>
...
<script type="text/javascript" src="includes/xpath.js"></script>
<script type="text/javascript" src="includes/SpryData.js"></script>
<script type="text/javascript">

var dsSpecials = new Spry.Data.XMLDataSet("data/cafetownsend.xml",
"specials/menu_item");

</script>

@id item description price

1 Summer salad organic butter lettuce with apples, blood
oranges, gorgonzola, and raspberry
vinaigrette.

7

2 Thai Noodle Salad lightly sauteed in sesame oil with baby
bok choi, portobello mushrooms, and
scallions.

8

3 Grilled Pacific Salmon served with new potatoes, diced beets,
Italian parlsey, and lemon zest.

16

N
O

T
E

The URL you decide to use (whether absolute or relative) is subject to the browser’s
security model, which means that you can only load data from an XML source that is
on the same server domain as the HTML page you’re linking from. You can get
around this limitation by providing a cross-domain service script. For more
information, consult your server administrator.
20 Using the Spry framework

...
</head>

6. (Optional) If the values in your data set include numbers (as in this example) you’ll want
to reset the column types for the columns that contain those numerical values. This
becomes important later if you want to sort data.

You set column types by adding a data set method called setColumnType to the head tag
of your document, after you’ve created the data set, as follows (in bold):
<script type="text/javascript">

var dsSpecials = new Spry.Data.XMLDataSet("data/cafetownsend.xml",
"specials/menu_item");

dsSpecials.setColumnType("price", "number");
</script>

In the example, the expression calls the setColumnType method on the data set object
called dsSpecials, which you’ve already defined. The setColumnType method takes two
parameters: the name of the data set column to re-type ("price") and the desired data
type ("number").
For more information, see “To sort a Spry data set” on page 24.

Once you’ve created the data set, your next step is to create a dynamic region so that you can
display the data. For instructions, see “To display data from a Spry data set” on page 21.

Related topics
■ “Sample code: Spry data set and dynamic region” on page 23

To display data from a Spry data set
Once you have created a Spry data set (see “To create a Spry data set” on page 19), you bind a
Spry dynamic region to the data set. A Spry dynamic region is an area on the page that
displays the data and automatically updates the data display whenever the data set is modified.

1. In Code view, create a Spry dynamic region by adding the spry:region attribute to the
tag that will contain the region. The attribute uses the syntax
spry:region="datasetName".

For example, if you are going to use a div tag as the container for the dynamic region
displaying data from the dsSpecials data set, you would add the spry:region attribute to
the tag as follows:

N
O

T
E

Most, but not all, HTML elements can act as containers for dynamic regions. For
more information, see “Anatomy of the Spry dynamic region” on page 9.
Building Spry pages 21

<div id="Specials_DIV" spry:region="dsSpecials">
</div>

2. Within the tag containing the dynamic region (this example uses a div tag), insert an
HTML element to display the first row of the data set. You can use any HTML element to
display data. One of the most typical elements used for this purpose, however, is a two-row
HTML table, where the first row contains static column headings and the second row
contains the data:
<table id="Specials_Table">

<tr>
<th>Item</th>
<th>Description</th>
<th>Price</th>

</tr>
<tr spry:repeat="dsSpecials">

<td>{item}</td>
<td>{description}</td>
<td>{price}</td>

</tr>
</table>

The values in curly braces in the second row specify columns in the data set. The curly
braces bind the table cells to data in specific columns of the data set.

3. Make the HTML element repeat automatically to display all the rows of the data set by
adding the spry:repeat attribute and value to the HTML element tag in the form of:
spry:repeat="datasetName"

In the example, you would add the spry:repeat attribute to the table row tag as follows
(in bold):
<tr spry:repeat="dsSpecials">

<td>{item}</td>
<td>{description}</td>
<td>{price}</td>

</tr>

N
O

T
E

Dynamic regions can depend on more than one data set. You can add more data
sets to the region by listing them as additional values of the spry:region attribute,
separated by a space. For example, you could create a dynamic region using
spry:region="dsSpecials dsSpecials2 dsSpecials3".

N
O

T
E

If the Spry region depends on more than one data set, you must specify the data set
to which you’re binding the dynamic region. The full syntax takes the form of
{datasetName::columnName}. For example, if you wanted to bind the dynamic
region to two or three different data sets, you would need to enter the data in the
above example as follows: {dsSpecials::item}, {dsSpecials::description},
and so forth.
22 Using the Spry framework

In the example, the completed code binding the dynamic region to the data set would
look as follows:
<div id="Specials_DIV" spry:region="dsSpecials">

<table id="Specials_Table">
<tr>

<th>Item</th>
<th>Description</th>
<th>Price</th>

</tr>
<tr spry:repeat="dsSpecials">

<td>{item}</td>
<td>{description}</td>
<td>{price}</td>

</tr>
</table>

</div>

4. If you want, you can make the dynamic region more interactive by defining click events
that allow users to sort data. For instructions, see “To sort a Spry data set” on page 24.

Related topics
■ “Sample code: Spry data set and dynamic region” on page 23

Sample code: Spry data set and dynamic region
The following sample code creates a Spry data set and dynamic region to display a list of
menu specials in an HTML table.
<head>
...
<script type="text/javascript" src="includes/xpath.js"></script>
<script type="text/javascript" src="includes/SpryData.js"></script>
<script type="text/javascript">

var dsSpecials = new Spry.Data.XMLDataSet("data/cafetownsend.xml",
"specials/menu_item");

</script>
...
</head>

<body>
...
<div id="Specials_DIV" spry:region="dsSpecials">

<table id="Specials_Table">
<tr>

<th>Item</th>
<th>Description</th>
<th>Price</th>

</tr>
Building Spry pages 23

<tr spry:repeat="dsSpecials">
<td>{item}</td>
<td>{description}</td>
<td>{price}</td>

</tr>
</table>

</div>
...
</body>

Related topics
■ “To create a Spry data set” on page 19
■ “To display data from a Spry data set” on page 21

To sort a Spry data set
You can add click events to your dynamic region that allow users to interact with the data. You
add click events by adding onclick handlers within the appropriate HTML tags. This section
uses the table code from “To display data from a Spry data set” on page 21 as an example.

1. Locate the place in the code where you want to add the onclick handlers. In this example,
we’ll be adding the onclick handlers to two column headers in a table that displays the
XML data.

2. Add an onclick handler with a sort method to the appropriate column header tags in the
form of
onclick="datasetName.sort(‘columnName’);"

The value defined in the sort method tells the data set which column to use when sorting
the data.
For example, adding the following onclick handlers (in bold) to column header tags causes
the dynamic region to sort the data according to the specified value whenever the user
clicks a column header on the page.
<div id="Specials_DIV" spry:region="dsSpecials">

<table id="Specials_Table" class="main">
<tr>

<th onclick="dsSpecials.sort(‘item’);">Item</th>
<th onclick="dsSpecials.sort(‘description’);">Description</th>
<th>Price</th>

</tr>
<tr spry:repeat="dsSpecials">

<td>{item}</td>
<td>{description}</td>
<td>{price}</td>

</tr>
24 Using the Spry framework

</table>
</div>

Clicking “Item” on the page sorts the data alphabetically according to the menu item
name, and clicking “Description” on the page sorts the data alphabetically according to
the menu item’s description.

Numerical sorting
By default all data in the data set (including numbers) is considered text, and sorts
alphabetically. To sort numerically (for example, to sort by price of menu item), you can use
the data set method called setColumnType to change the data type of the price column from
text to numbers. The method takes the form:
datasetName.setColumnType("columnName", "number");

Using the above example, you would add the setColumnType method to the head tag of your
document, after you’ve created the data set (in bold):
<script type="text/javascript">

var dsSpecials = new Spry.Data.XMLDataSet("data/cafetownsend.xml",
"specials/menu_item");

dsSpecials.setColumnType("price", "number");
</script>

The expression calls the setColumnType method on the data set object called dsSpecials,
which you’ve already defined. The setColumnType method takes two parameters: the name of
the data set column to re-type ("price") and the desired data type ("number").

You can now add the onclick handler to the price column so that all three columns in the
HTML table are sortable when the user clicks any of the table headers:

<div id="Specials_DIV" spry:region="dsSpecials">
<table id="Specials_Table" class="main">

<tr>
<th onclick="dsSpecials.sort(‘item’);">Item</th>
<th onclick="dsSpecials.sort(‘description’);">Description</th>
<th onclick="dsSpecials.sort(‘price’);">Price</th>

</tr>
<tr spry:repeat="dsSpecials">

<td>{item}</td>
<td>{description}</td>
<td>{price}</td>

</tr>
</table>

</div>
Building Spry pages 25

To create basic master/detail dynamic regions
When working with Spry data sets, you can create master/detail dynamic regions to display
more detail about your data. One region on the page (the master), drives the display of the
data in another region on the page (the detail).

For an overview of how basic master/detail dynamic regions work, see “Anatomy of the Spry
basic master/detail dynamic region” on page 11.

1. Create a data set. See “To create a Spry data set” on page 19.

2. Create the master region by adding the spry:region attribute to the HTML element that
will act as the container tag for the region. See “To display data from a Spry data set”
on page 21.

In the following example, a master dynamic region displays repeated data from the data
set dsSpecials:
<head>
. . .
<script type="text/javascript" src="../includes/xpath.js"></script>
<script type="text/javascript" src="../includes/SpryData.js"></script>
<script type="text/javascript">

var dsSpecials = new Spry.Data.XMLDataSet("data/cafetownsend.xml",
"specials/menu_item");</script>

</head>
. . .
<body>

<div id="Specials_DIV" spry:region="dsSpecials">
<table id="Specials_Table">

<tr>
<th>Item</th>
<th>Description</th>
<th>Price</th>

</tr>
<tr spry:repeat="dsSpecials">

<td>{item}</td>
<td>{description}</td>
<td>{price}</td>

</tr>
</table>

</div>
</body>

3. Add event handlers that will allow users to change the current row in the data set. In the
following example, an onclick event handler (in bold) changes the current row in the data
set whenever a user clicks a row in the master region table:
<tr spry:repeat="dsSpecials"

onclick="dsSpecials.setCurrentRow('{ds_RowID}')">
<td>{item}</td>
26 Using the Spry framework

<td>{description}</td>
<td>{price}</td>

</tr>

The {ds_RowID} data reference used in the example is a built-in part of the Spry
framework that points to an automatically-generated unique ID for each row in the data
set. (See “Anatomy of the Spry data set” on page 6.) When the user selects a row in the
master region table, the onclick event handler supplies the unique ID to the
setCurrentRow method, which causes the resetting of the current row in the data set.

4. Create the detail dynamic region on the page by adding the spry:detailregion attribute
to the tag that will contain the region. The attribute uses the syntax
spry:detailregion="datasetName".

In the following example, a div tag contains the detail dynamic region:
<div id="Specials_Detail_DIV" spry:detailregion="dsSpecials">
</div>

5. Within the tag containing the detail dynamic region, insert an HTML element to display
the detail data from the current row of the data set.

In the example, an HTML table displays detail data from the {ingredients} column
and {calories} column in the dsSpecials data set.
<div id="Specials_Detail_DIV" spry:detailregion="dsSpecials">

<table id="Specials_Detail_Table">
<tr>

<th>Ingredients</th>
<th>Calories</th>

</tr>
<tr>

<td>{ingredients}</td>
<td>{calories}</td>

</tr>
</table>

</div>

The completed example code binding both the master and detail dynamic regions to the
dsSpecials data set would look as follows:
<div id="Specials_DIV" spry:region="dsSpecials">

<table id="Specials_Table">
<tr>

<th>Item</th>
<th>Description</th>
<th>Price</th>

</tr>
<tr spry:repeat="dsSpecials"

onclick="dsSpecials.setCurrentRow('{ds_RowID}')">
<td>{item}</td>
<td>{description}</td>
Building Spry pages 27

<td>{price}</td>
</tr>

</table>
</div>
<div id="Specials_Detail_DIV" spry:detailregion="dsSpecials">

<table id="Specials_Detail_Table">
<tr>

<th>Ingredients</th>
<th>Calories</th>

</tr>
<tr>

<td>{ingredients}</td>
<td>{calories}</td>

</tr>
</table>

</div>

To create master/detail dynamic regions that rely on
more than one data set
You can create master/detail relationships that involve more than one data set. For an
overview of how such relationships work, see “Anatomy of master/detail dynamic regions that
depend on more than one data set” on page 13.

1. Familiarize yourself with the structure of the XML files used in creating the data set. You’ll
need to understand the structure in order to make one data set depend on another.

2. Create a data set by adding the appropriate code to the head of your document. (See “To
create a Spry data set” on page 19.) This will be the master data set.

3. Create a second data set (the detail data set) immediately following the master data set you
just created. The URL or XPath in the constructor of the detail data set contains a data
reference to one or more of the columns in the master data set. The data reference is in the
form {MasterDatasetName::columnName}.

In the following example, the third <script> block contains the statement that creates
two data sets, one called dsSpecials (the master) and one called dsIngredients (the detail):
<head>
. . .
<script type="text/javascript" src="../includes/xpath.js"></script>
<script type="text/javascript" src="../includes/SpryData.js"></script>
<script type="text/javascript">

var dsSpecials = new Spry.Data.XMLDataSet("data/cafetownsend.xml",
"specials/menu_item");

var dsIngredients = new Spry.Data.XMLDataSet("data/
{dsSpecials::url}", "item/ingredients/ingredient");
28 Using the Spry framework

</script>
</head>

The path to the XML file for the detail data set, dsIngredients, contains a data reference
({dsSpecials::url}) to the master data set, dsSpecials. More specifically, it contains a
data reference to the url column in the dsSpecials data set. When the url or XPath
argument in the constructor that creates a data set contains a reference to another data set,
that data set (the data set being created) automatically becomes an observer of the data set
it’s referencing.

4. Create the master region by adding the spry:region attribute to the HTML element that
will act as the container tag for the region. See “To display data from a Spry data set”
on page 21.

In the following example, a master dynamic region displays repeated data from the data
set dsSpecials:
<body>

<div id="Specials_DIV" spry:region="dsSpecials">
<table id="Specials_Table">

<tr>
<th>Item</th>
<th>Description</th>
<th>Price</th>

</tr>
<tr spry:repeat="dsSpecials">

<td>{item}</td>
<td>{description}</td>
<td>{price}</td>

</tr>
</table>

</div>
</body>

5. Add event handlers that will allow users to change the current row in the master data set.
In the following example, an onclick event handler (in bold) changes the current row in the
dsSpecials data set whenever a user clicks a row in the master region table:
<tr spry:repeat="dsSpecials"

onclick="dsSpecials.setCurrentRow('{ds_RowID}')">
<td>{item}</td>
<td>{description}</td>
<td>{price}</td>

</tr>
Building Spry pages 29

The {ds_RowID} data reference used in the example is a built-in part of the Spry
framework that points to an automatically-generated unique ID for each row in the data
set. (See “Anatomy of the Spry data set” on page 6.) When the user selects a row in the
master region table, the onclick event handler supplies the unique ID to the
setCurrentRow method, which causes the resetting of the current row in the data set.

6. Create the detail dynamic region on the page by adding the spry:region attribute to the
tag that will contain the region. The attribute uses the syntax
spry:region="datasetName".

In the following example, a div tag contains the detail dynamic region:
<div id="Specials_Detail_DIV" spry:region="dsSpecials">
</div>

7. Within the tag containing the detail dynamic region, insert an HTML element to display
the detail data from the current row of the master data set.

In the example, an HTML table displays detail data from the {name} column in the
dsIngredients data set. The dsIngredients data set creates the {name} column based on the
information it receives from the dsSpecials data set.
<div id="Specials_Detail_DIV" spry:region="dsIngredients">

<table id="Specials_Detail_Table">
<tr>

<th>Ingredients</th>
</tr>
<tr spry:repeat=”dsIngredients”>

<td>{name}</td>
</tr>

</table>
</div>

The completed example code binding the master region to the dsSpecials data set, and detail
region to the dsIngredients data set, would look as follows:
<head>
. . .
<script type="text/javascript" src="../includes/xpath.js"></script>
<script type="text/javascript" src="../includes/SpryData.js"></script>
<script type="text/javascript">

var dsSpecials = new Spry.Data.XMLDataSet("data/cafetownsend.xml",
"specials/menu_item");

N
O

T
E

When creating master/detail relationships using two or more data sets, it is not
necessary to use the spry:detailregion attribute as is outlined in “To create basic
master/detail dynamic regions” on page 26. Because the current row of the detail
data set never changes (it’s the current row of the master data set that changes), the
spry:region attribute suffices. For more information, see “Anatomy of master/
detail dynamic regions that depend on more than one data set” on page 13.
30 Using the Spry framework

var dsIngredients = new Spry.Data.XMLDataSet("data/{dsSpecials::url}",
"item/ingredients/ingredient");

</script>
</head>
. . .
<body>

<div id="Specials_DIV" spry:region="dsSpecials">
<table id="Specials_Table">

<tr>
<th>Item</th>
<th>Description</th>
<th>Price</th>

</tr>
<tr spry:repeat="dsSpecials"

onclick="dsSpecials.setCurrentRow('{ds_RowID}')">
<td>{item}</td>
<td>{description}</td>
<td>{price}</td>

</tr>
</table>

</div>
<div id="Specials_Detail_DIV" spry:region="dsIngredients">

<table id="Specials_Detail_Table">
<tr>

<th>Ingredients</th>
</tr>
<tr spry:repeat=”dsIngredients”>

<td>{name}</td>
</tr>

</table>
</div>

. . .
</body>
Building Spry pages 31

32 Using the Spry framework

	Using the Spry framework
	About AJAX and the Spry framework
	About AJAX
	About the Spry framework

	How Spry pages work
	Anatomy of the Spry data set
	Anatomy of the Spry dynamic region
	Anatomy of the Spry basic master/detail dynamic region
	Anatomy of master/detail dynamic regions that depend on more than one data set

	Building Spry pages
	To prepare your files
	To create a Spry data set
	To display data from a Spry data set
	Sample code: Spry data set and dynamic region
	To sort a Spry data set
	To create basic master/detail dynamic regions
	To create master/detail dynamic regions that rely on more than one data set

